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We present a theory to account for how a stress field can induce plastic flow in glassy
polymers. We consider a molecular model in which chains are constituted from isotropic
oriented elementary links embedded in a deforming continuum. The shear-stress field
causes a redistribution of such links governed by a balance equation in orientation space.
After detail calculations of the number of oriented units in certain directions, the net jump
rate of the molecular links is given by an exponential form, according to the transition state
theories of Adam and Gibbs [6]. These considerations are compared with the study of
Boyce et al. [5] that included the effects of deformation rate, pressure and strain softening.
The calculation of the plastic properties for polymethyl methacrylate and polycarbonate for
various types of deformation has been made, and the corresponding results fitted the

experimental data reasonably well.

1. Introduction

The plastic properties of many glassy polymers have
been shown experimentally to exhibit three distinct
regions. At small strains, after an elastic deformation
appears at the beginning, a yield behaviour is revealed
and the material starts to plastically deform. As the
deformation proceeds further, most glassy polymers
possess a response characterized by a true strain
softening. Finally at strains over about 30% the mate-
rial usually exhibits orientation hardening. Mechan-
ical tests executed on representative glassy polymers
such as polycarbonate (PC) and polymethyl-methac-
rylate (PMMA) show these distinct characteristics on
a strain curve. Such tests also show that the plastic
behaviour is proceeded by the nucleation and growth
of shear bands inclined on the tensile or compression
axis. The shear bands, generated on a small-scale at
the beginning, are the result of a molecular realign-
ment when the material begins to be stressed.

A number of different approaches are used to
describe how a shear stress can induce structural
changes in a glassy polymer thereby breaking the
rigidity of the glass and allowing it to flow. The earliest
quantitative model used to describe the plastic flow
of polymers is that due to Eyring [1]. This model
assumes that molecular segments are vibrating in
a potential well with an energy barrier. The applied
stress induces an energy bias on the height of the
barrier, for a jump in the forward direction. The stress
dependence of the rate of the transition appears
through an hyperbolic sine term, but the simple Eyr-
ing equation cannot give detailed fits of experimental
data. Another notable attempt to model the plastic
flow of glassy polymers has been made by Robertson
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[2]. He assumes that at any time the molecular seg-
ments of the polymer chains are distributed between
a population of cis and trans conformations. The effect
of the applied stress is to cause certain segments to
change over from the trans to the cis conformation,
thereby sufficiently increasing the cis population to
allow yielding to occur. Although this transition is
a matter of intermolecular forces, Robertson assumes
that the polymer can generally be changed from the
glassy to the liquid state by whatever means that
reduce the intermolecular or the intramolecular forces.

This analysis has been extended by Duckett et al.
[3] to incorporate the effect of the hydrostatic com-
ponent of the stress tensor on the yield stress. Consid-
ering the simplifications inherent in the model, it
predicts the general features, such as the variation of
the yield stress with temperature and strain rate, re-
markably well. Following an analogous trend another
approach has been considered by Argon [4]. This
model considers that plastic flow occurs when the
intermolecular resistance of the material to segment
rotation has been overcome. Argon has derived the
necessary free energy change, to produce segment
rotation against the surrounding chains that are
modelled as an equivalent elastic medium. Once the
material begins to flow, molecular alignment occurs,
which decreases the configurational entropy of the
material. This is the second source of deformation
resistance. This entropic resistance is modelled by
using a Langevin approximation for the rubber elas-
ticity in order to obtain a hardening response as larger
strains are approached.

The Argon approximation has been extended by
Boyce et al. (BPA model) [5] to include the effects of
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deformation rate, pressure, true strain softening, and
temperature on the plastic resistance. A three-dimen-
sional constitutive model has been developed and the
physical mechanism associated with each of these phe-
nomena has been described.

In the theory that follows we consider that each
molecular chain is constituted from a number of iso-
tropic oriented elementary links, which act as a small
rigid stick embedded in a deforming continuum.
When a shear-stress is developed in localized regions,
the isotropic orientation of the rigid links is altered,
and a new direction of the material lines occupied by
each link is determined. The polymer flow starts as
a sequence of molecular jumps governed by some kind
of activated process. The main source of this activa-
tion process is the intermolecular forces developed
among the segments of polymer chains. Following the
idea of Adam and Gibbs [6] that the transition in
glasses has a co-operative nature, we assume that the
macroscopic strain rate of the sample is proportional
to the net jump rate of the molecular links towards
a certain direction. This jump rate is given by an
exponential form of the energy barrier multiplied by
the number of links oriented along the revealed shear
bands. To complete the present study the three-dimen-
sional constitutive model introduced by Boyce et al.
[5] will be applied. Detailed discussion of the predic-
tions of this analysis will be made on the experimental
results used by previous authors.

2. Theory

While the yield phenomenon of metals can be de-
scribed by changes in the local atomic conformation
through the dislocation motion, in amorphous poly-
mers there are as yet no suitable models for such
a description, because of the absence of a specific
structure and also the extinction of any kind of distur-
bance inside the material. On the other hand experi-
mental observations have firmly established that yield
behaviour in polymers is initiated in localized regions
inside the bulk. This fact implies the generation of an
amount of inhomogeneity during the material forma-
tion. It is known that the free volume in polymers is
unequaly distributed amongst the molecules and this
results in a different packing density at various points
in the material.

In the present study we will attempt to employ this
fact in a quantitative formulation of the yield initia-
tion in amorphous polymers. More particularly we
will investigate the possible existence of a hidden
structure inside the amorphous materials, and the
concept that a disturbance of such a structure is re-
sponsible for the yield initiation. At temperatures
below the glass transition temperature, T,, of a glassy
polymer, the reference configuration is the isotropic
state of the material consisting of randomly oriented
molecular chains. Each single chain with its end-to-
end vector r, in the initial state contains a number of
links of constant length, b. If the material is completely
isotropic and totally homogeneous, we can assume
that it consists of an ensemble of elementary units that
reflect the isotropy and homogeneity of the bulk ma-
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terial. This assumption implies that at any point of the
polymeric material there always exists an elementary
space, that contains a constant number of molecular
links uniformly distributed in various directions.

An illustrative way to make this consideration
more clear is to use what we call “orientation space”
for a one-to-one correspondence of the area with
the molecular conformation (topology) in real space.
Fig. 1 illustrates this correspondence for a complete
isotropic and homogeneous polymeric material. Ac-
cording to this representation we can assume that
a hidden structure exists inside the amorphous sub-
stance, which is clearly visible in the “orientation
space”. By analogy with crystalline materials we can
say that the repeat unit of this structure is the elemen-
tary volume with a constant number of uniformly
distributed links. However, it is known that the free
volume shared amongst the elementary molecular
units is not distributed uniformly. This requires that
the repeat units of the orientation space have a vary-
ing number of molecular links.

There is a distribution function which expresses the
number of links, N; of the ith element that should be
extracted from the way in which the free volume is
distributed around the molecular links. This problem
has been rigorously treated by Cohen and Turnbull
[7], and has also been solved in a simple manner by
Bueche [8]. For the present it will be assumed that, if
the number of links for the case of equivalent elements
is N, then the probability for the ith element to contain
N; links (N; = N/q, where ¢ is an integer) will be equal
to the probability for a particular link to share ¢
packets of the total free volume.

According to the approximation used by Bueche
this probability can be expressed as:

p(q) = (1/2ng)'*exp[ — q(Ing — 1) = 1] (1)

It is plausible to assume that the mechanical proper-
ties of each separate element are related to the number
of links Nj, in particular the elastic constants should
be proportional to this number. If this assumption is
valid then there will be some regions inside the mater-
ial with a different strength to the overall mean value.
The above mentioned distribution function even per-
mits the existence of some areas with deviations of one
order of magnitude in the mechanical strength. These
deviations are responsible for the preferential forma-
tion of yield bands during mechanical deformation. In

IV, links|

iith element i

$ ith element

Figure 1 Schematic representation of the one-to-one correspond-
ence between the isotropic regions of an amorphous polymer and
the equivalent elements of the “orientation space”.



the following sections we will describe how this event
evolves when a stress field is developed inside the
glassy polymer. It should be noted at this point that
the isotropy of the material is still conserved because
the initial distribution of the free orienting links in
each element is considered to be uniform.

In the theory that follows, we consider the effect of
the stress field on the direction of the vector b. Suppos-
ing that each link is embedded in an elastic medium,
which is constructed from the rest of the molecules of
the system, we can assume that under a stress field
a “pseudo affine” deformation occurs resulting in a
new direction for the vector b. We make use of the
“pseudo affine” model to express the state of orienta-
tion still existing in the material after the stress is
removed. This new direction that is the result of inter-
molecular interactions with the neighbouring chains
leads to a new distribution of the material lines occu-
pied by each link.

Wu and Van Der Giessen [9] have developed the
idea of an orientation distribution function to describe
the evolution of a rubber network consisting of a large
number of molecular chains that is initially randomly
oriented in space. In our consideration we will follow
a similar approach where instead of the affine defor-
mation for each chain we will examine only the ori-
entation change of each link. This approach is
schematically shown in Fig. 2(a—c), where the initial
uniformly distributed links are forced to orient along
a mean direction parallel to the major principal axis of
macroscopic local strain. The isotropic distribution in
the undeformed state can be represented by a radial
arrangement of chain links corresponding to a density
distribution, ng, equal to 1/4n. After the imposition of
a deformation, F, a new density distribution, n, will be
conformed. In the proximity of a material point
a sphere of radius dX will deform in an ellipsoid as
is shown in Fig. 2c, with a corresponding radius
dy = FdX. Supposing that the total number of links,
N, directed around a material point is conserved after
the deformation, we may write [10],

n dQ,
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Figure 2 A single element in an unstrained and a strained state: (a)
isotropic conformation of molecular links in amorphous polymer,
(b) uniformly distributed links in “orientation space”, (c) deforma-
tion of a sphere of radius dX in the proximity of a material point.

Where dQ, and dQ are the solid angles in the unde-
formed and deformed state correspondingly. Express-
ing dQ, and dQ with respect to |dy| and |dX| we

obtain:
n_d9 (g1 o)
ne dQ  \|dx|)J J

Where A = |dy|/|dX], and J is the volume change. In
the case of isovolume deformation, J is equal to unity
and n = A*/4n. The above relation can be applied in
every state of the deformation mode. The stretch ratio
A, 1s then calculated for each direction as a function of
the polar co-ordinate angles and the components of
the deformation gradient tensor F.

Applying these results in the case of uniaxial elonga-
tion then the deformation gradient tensor is given by:

M0 0
F=[0 )" 0 |, J=detF=1(
0 0 (L)~ 12

The ratio of density distributions will now be given by
the following expression
M3 M
no (A3 + (1 —A3) sin* Y cos® @)*/?

)

This equation has its minimum values for each direc-
tion determined by the angle ¢ = /2

1
=5 6
7\.31/2 ( )

Mmin _ 23
o
Applying the above results in the case of simple shear
where the deformation gradient tensor F is given by:

1 v O
F=[0 1 0f, J=detF=1 (7
0 0 1

The ratio of density distributions will be expressed as
follows:

n 3 1

=3 = 8
no [1 + ysin® 3 sin @(ysin @ — 2cos @)]*/? ®)
The minimum value of this formula is obtained in the
directions determined by the angles ¢ =mn/2 +
ltan~1(2/8), 0 = n/2.

1 2 32
nmin=_< ) (9)
AT\2 4+ 2 + . /y? + 4

In the following sections we will make use of this
density distribution function to explain the mecha-
nism by which plastic flow occurs. When a glassy
polymer is subjected to a stress field, yield initiates
in localized regions with decreasing strength. What
is assumed is that the macroscopic strain rate or
the rate of the volumetric plastic deformation, €%, of
the sample, is proportional to the net jump rate of the
links towards a certain direction. Based on the idea
that this jump constitutes a transition effect, for that
part of the material which supports plastic flow, the
theory of Adam and Gibbs [6] that such transitions
in glasses have a co-operative nature can be applied.
This means that the rate of plastic deformation can be
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given by the following exponential form:
n*AH
KT

éry = éoexp< — (10)
Where the pre-exponential factor é, would be equal to
the elementary Debye frequency, AH is the energy
barrier that has to be overcome for the transition to
occur, n* is the number of links acting co-operatively
as a unit to make a rearrangement, T is the absolute
temperature and K is Boltzman’s constant. Most of
the current theories for the shear-induced plastic flow
of glassy polymers are based on the idea that the stress
acts as an energy bias on the height of the barrier AH.
Argon [4] has calculated the activation free enthalpy
for formation of a pair of molecular links based on the
work of Li and Gilman [11] for wedge disclination
loops. More accurately, they computed the elastic
energy stored in regions outside the disclination cores
where the assumption of linear elasticity holds. In the
present study we assume that what is mainly changed
under the applied stress is the number of co-operative
units (links) that make suitable rearrangements to
initiate the plastic flow. According to the above pre-
sented calculations, Equation 3 gives the density dis-
tribution of reoriented molecular links after a stress
field has been imposed. The maximum value of the
plastic strain rate is taken in the direction where the
number of co-operative links is a minimum. Taking
into account this assumption Equation 10 can be
rewritten as:

AHN; 2
4nKT

€bq = €0exXp —

(11)

for uniaxial elongation where the volumetric rate de-
formation is equal to the strain rate in the load direc-
tion (éb, = &}, = &P), the above equation becomes:
, AHN, 1 AHN, 1
EeXP ———— 55 =EXp ———————
XD T kT332 T P T KT (1 1 6
(12)

For simple shear deformation the corresponding rela-
tion takes the form:

&P =

YP = Yoexp AHN; < 2 )3/2
° KT \2 +v% + v /v* + 4

= YoeXp
AHa G [ 2
AnKT | 2 + (2/G;)* + 2/G;

3/2
(yqﬁ+4}
(13)

where ¢2, = 7°/(3)"/?, has been taken into account.
To obtain the above relations, the number of co-
operative links has been substituted by the density
distribution, n,,;,, multiplied by the total number of
links, N;, of the microstructure where the plastic flow
occurs. The strain € of Equation 12 can be substituted
by the tensile stress divided by the tensile modulus, E;,
of the region where yield is initiated (¢ = o/E;). Cor-
respondingly, the shear strain, vy, of Equation 13 has
been written as the ratio of the shear stress divided
by the shear modulus G;, (y = 1/G;). The magnitude of
the constants E;, and Gj, is less than the modulus
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of the whole material. These values are proportional
to the number of links, N;, of the ith element
(N; = aG;: where o is a material specific constant
which depends on the molecular strength and the
intermolecular potential). At the flow state, the steady
state flow dilatation results in a decreased inter-
molecular interaction that reduces the material
strength. This fact can be used to model the yield and
post yield behaviour of glassy polymers that exhibit
strain softening and pressure dependence. Extending
the above expression to include such effects, with
internal parameters that will be treated in a similar
way as the athermal shear strength introduced in the
BPA model [5]. It should be noted at this point that
the corresponding expression for the plastic shear
strain as developed by Argon and extended by Boyce
et al., is given by the following relation:

Yo = w'/oexp{— % [1 _ <:0>5/6}} (14)

Where sq, is the athermal shear yield strength of the
material that becomes equal to the applied shear stress
when the absolute temperature T approaches zero,
and A, is a material specific constant which is depen-
dent on the mean molecular radius and a net angle of
rotation of the molecular segment. Argon [4] has
calculated the athermal shear strength s, as a function
of the material constants using the following relation-
ship:
0.077G
SO =
1—v

(15)

where G, is the shear modulus, and v the Poisson’s
ratio of the tested material. This value has been experi-
mentally verified by measuring the yield shear stress at
various temperatures and extrapolating the experi-
mental data to absolute zero [4].

In our consideration we can assume that the shear
modulus G; of the ith element with the smallest num-
ber of links has almost the same value as the athermal
shear strength of the BPA model. This assumption
is based on the fact that the shear strain, vy, of the
micro-region where a shear band is initiated, is of the
order of unity. In what follows however, the exact
value of the constant G; will be extracted by fitting
Equation 13 for various applied strain rates and
measuring the corresponding yield stress.

The above idea, for modelling plastic deformation
as a direct result of the orientation of elementary units
(links) under a stress field, is also offered as a plausible
explanation of stress softening which usually accom-
panies the yield behaviour of glassy polymers. To
qualitatively justify this phenomenon we will recall the
mechanical behaviour of oriented polymers. Investiga-
tions of the mechanical anisotropy of polymers have
for the most part been restricted to the cases where
isotropy is considered in a plane perpendicular to the
direction of drawing. Choosing the z direction as the
axis of symmetry there are five independent elastic
constants that appear in the stress—strain relations.
Using these constants the tortional or shear modulus
G, which is related to the shear deformation in the yz
of xz planes, shows a very characteristic variation in
respect to the draw ratio of oriented polymers.
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Figure 3 Schematic representation for the variation of shear
modulus of the ith element as a function of the draw ratio.

This behaviour that is schematically shown in
Fig. 3, has been modelled by many authors by aver-
aging a number of elements with different shear
moduli in various directions. The pseudo-affine defor-
mation scheme that is introduced at the beginning of
this work, and the corresponding orientation distribu-
tion function gives a reasonable first order fit of the
experimental results for many oriented polymers [12].
If this result is correct, we can assume that the shear
modulus of the activated volume where plastic flow
occurs has an analogous behaviour with respect to the
induced draw ratio of oriented links, as the strain
deformation proceeds. A plausible differential equa-
tion describing this variation beyond the yield point
can be given as follows:

dG; G;
o h<1 — G@) for A >, (16)

Where h, is the slope of the shear modulus drop with
respect to the draw ratio A in the interval (A, A,), G, is
the limited value of G, and A, is the stretch ratio of the
activated region at yield initiation. Dividing the above
equation with an elementary time interval dt, and
taking the rate of plastic deformation after yield point
to be equal to the rate of stretch ratio, we obtain the
following time evolution equation for G:

. G,
N (I P2
G h<1 G@)y (17)

This formula is exactly the same as the one concerning
the athermal shear strength introduced from the BPA
model to account for the stress softening.

To include the effect of pressure dependence we can
substitute G; by the expression, G; + Bp, where p is the
pressure and [, the pressure dependence coefficient.
This expression can be extracted from the experi-
mental results of Rabinowitz et al. [13], where the
yield shear stress has been measured as a function of
hydrostatic pressure. As can be seen from the corres-
ponding diagram, the shear modulus of the tested
materials increases linearly with respect of pressure
with a proportionality constant equal to P.

To complete the above analysis we will follow, as
in the BPA model, the work of Lee [14] on the decom-

position of the deformation gradient F into elastic
end plastic parts, F = F°FP where F°, is assumed to
be symmetric, so that FP then represents the relaxed
configuration obtained by unloading without rota-
tion. Polar decomposition of the plastic deformation
gradient results in the expression:

FP=VPR® with R°P=R, R°=1  (18)

The rate quantity corresponding to this decomposi-
tion is the velocity gradient L.

L=FF '=D+ W = FLPFe! (19)

Where, LP = FPFP~! = DP + WP, and DP, WP are re-
spectively the symmetric and skew parts of LP. The
tensor LP is the velocity gradient of the relaxed con-
figuration. The tensor D describes the rate of change
of shape of the relaxed configuration. The spin of
the relaxed state, WP, is algebraically given as W plus
a term dependent on F° and D + DP. The plastic
strain-rate D? must be constitutively described. In
the BPA model, the magnitude of DP is given by the
plastic strain rate ¥° according to Equation 13, while
the tensor direction of D® is specified by N, so that:

D =i°N (20)

The direction N is the deviatoric portion of the driving
stress state, T*, at any material point. This driving
stress state is given in the continuum by the tensor:

1
T*=T — FBF* (21)

Where T is the Cauchy stress tensor, B is the back
stress tensor due to strain hardening resulting from
molecular alignment, which will be constitutively pre-
scribed below, and J is the volume change given by
det F°. The resulting normalized deviatoric part of
the driving stress state, N, is now determined by the
relations:

1

iy B 1 w2 1/2
(2)1/2tT , r—[ztr(T )] (22)

Where 1 is the effective equivalent shear stress, and
T*' is the deviatoric portion of the driving stress T *.
The Cauchy stress is assumed to be given by the elastic
constitutive law, Anand [15]

T = % L% [In F*] (23)

Where L€, is the usual fourth-order isotropic elas-
tic modulus tensor. With the description of the
kinematics and the constitutive connection between
stress and elastic deformation, the theory needs to be
complemented with a constitutive law for the back
stress tensor B due to entropic hardening.

2.1. Orientation hardening

The post-yield behaviour of glassy polymers has been
shown to exhibit a true strain softening, which varies
in magnitude from one polymer to another. This is
observed at strains of 5-50%. However, if defor-
mation continues at larger strains, there almost
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inevitably follows a rise in the true stress. This obser-
vation at large deformations has been regarded as
a macromolecular orientation process essentially sim-
ilar to the extension of a rubber but taking place under
conditions of a high internal viscosity, which limits
retraction when the stress is removed [ 16]. The occur-
rence of this hardening process, which is called “ori-
entation hardening”, decreases the configurational
entropy of the system, and is responsible for the
internal resistance to continuous flow. If orientation
hardening is actually a phenomenon related to the
straightening out of polymer chains between fixed
points then certain analogies with the behaviour of
rubber-like materials could be applied. Haward and
Thackray [17] have modelled this behaviour for
uniaxial extension by means of a back stress deter-
mined through a Langevin spring. In the present anal-
ysis, we will follow the above approach as has been
extended by use of the BPA model, to describe general
three-dimensional plastic deformations. According to
this work the principal back stress components, B;, are
related to the gradient of the entropy change, AS, with
respect to the principal plastic stretch, V¥, in that
tensorial direction.

0AS
B,=—TV?
1 1 an

(24)

The network model, which is used to describe the
change in entropy, has been incorporated from the
work of Wang and Guth [18]. This model, which is
applied in a three-chain non-Gaussian network, gives
a detailed expression for the back stress in terms of
specific molecular characteristics:

_ R(Q)l/z pr —1 Vf) 13 pr—1 VII)
B=C" [VﬁL <(Q)”2>_§i_leiL <(Q>”2>}

(25)

where Q, is the number of rigid chain links between
entanglements, C® is essentially the rubbery modulus,
and L is the Langevin function defined by:

%

L(B;) = coth(B;) — B, = 0"

(26)

with the inverse given by

L;1Q£;ﬂ>::& 27)

This model has been satisfactorily applied to poly-
methyl methacrylate (PMMA), but it was not capable
of picking up the strain hardening observed experi-
mentally in polycarbonate (PC). This result lead

Arruda and Boyce [19] to suggest an eight-chain
non-Gaussian network model. The study of the ori-
entation hardening by the eight-chain model reveals
a better agreement with experiments than the tradi-
tional three-chain model. However, very recently, Wu
and Van Der Giessen [9] found that the three-chain
and the eighth-chain models are approximate repres-
entations of the actual spatial distribution of molecu-
lar chains. On the basis of this consideration they have
introduced a model accounting for the full network of
rubber-like materials, and they have used it to model
orientation hardening in glassy polymers. In the pres-
ent study we will use the three-chain model for the
description of orientation hardening, the above analy-
sis will be tested on uniaxial data where every network
model fits experimental results with a proper choice of
network parameters.

3. Application of the model
The model proposed in this paper for the description
of micro mechanism of plastic flow, will be tested
against the experimental results of other workers.
In the case of uniaxial elongation we will choose the
measurements executed on polymethyl methacrylate
(PMMA) by Hope et al. [20]. In the case of simple
shear deformation we will make use of the experi-
mental work presented by G’Sell and Gopez [21],
where amorphous polycarbonates (PC) were tested in
plane simple shear at various temperatures and shear
rates. The application of this model to such experi-
mental data will give the opportunity to compare our
analysis with the micro-mechanical model suggested
by Argon [4] and extended by Boyce et al. [5].

The components of the velocity gradient tensor for
uniaxial extension are given with respect to a global
Cartesian basis:

& 0 0
L=[0 & 0 (28)
0 0 &

Three values of strain-rate are  applied
(6=1,0.1,001s" ") and the transverse strain-rate
ér 1s determined from the boundary conditions
G,, = 033 = 0. The true stresses versus strain results
are obtained by numerical integration of Equations
20-23 in combination with the plastic rate expression,
Equation 13. The back stress is calculated from the
current plastic stretch according to the three-chain
network model described by Equation 25. The mater-
ial parameters used in the model are summarized in
Table 1. Most of the values of these elastic and

TABLE 1 Material parameters used in the numerical simulation for the tensile and shear stress—strain data

Y, A = AH o/4nK G, G; h B c? 0 G v
(s7h (KMPa™ 1) (MPa) (MPa) (MPa) (MPa) (MPa)
Tensile 1x10' 210 78 70 900 0.2 6 9 800 0.3
test
Shear 2% 1012 180 107 90 500 0.08 10 3 840 0.3

test
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Figure 4 Tensile true stress—strain data on glassy PMMA at 90 °C.
The model results are represented by the dashed line whilst the
experimental results are represented by the solid line. Data are
presented for ¢ values of (a) 1.0s™ %, (b) 0.1 s~ ! and (c) 0.01 s~ 1.

viscoelastic constants are based on the simulation
process followed by Boyce et al. [5]. The plots in
Fig. 4, show the comparison of the present model with
the experimental results for uniaxial extension of
PMMA [20]. As is shown in these graphs, the uniaxial
response is accurately mimiced using the parameter
values listed in Table 1. The corresponding fitting of
the BPA model [5] shows some differences in the
strain area where plastic flow initiates. In our case this
response takes place at strains over about 4% which is
closer to the experimental value.

For further assessment of the adequacy of this
model to give a detailed description of the plastic flow
of glassy polymers, various types of deformations and
materials should be tested. A significantly different
deformation process to the uniaxial extension present-
ed above is the simple shear deformation. For that
reason we have considered the case of simple shear
deformation of polycarbonate (PC) at room temper-
atures. The components of the velocity gradient tensor
for that state of deformation on the x;—x, plane are
determined as follows:

09 0
L=|0 0 0 (29)
000

The principal components, V¥, are determined via the
plastic shear deformation yP®, using the following rela-
tions:

1
E¢=§W%H4+W5ml As=1 (30)

The axes of V'? are then found and the associated
B; are calculated from Equation 25. The correspond-
ing principal stretches of V'{ are given by using the
relation, V' = V °V'?, and the resulting principal com-
ponents of the stress tensor can be obtained. The shear
component, G;,, in the x;—x, plane is then calculated
by rotating the principal axes via an angle 9, given by:

tme=%w+m+WW% (31)

For the numerical integration of the constitutive equa-
tions we used the material constants listed in Table I.
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Figure 5 Shear stress response to a large simple shear of 0.003 s~ *
for PC at room temperature. The experimental data represented
as (—) is simulated by the (- - - ) present model and the (——) BPA
model.

Some of these values are taken to be the same as in the
case of the application of the BPA model by Wu and
Van Der Giessen [9]. Fig. 5, shows the shear stress
Gy, as a function of a shear strain y with a shear rate
¥ =3x10"3s" 1. Also shown is the simulation of the
BPA model as obtained by Wu and Van Der Giessen.
It is evident from this comparison that the yield initia-
tion is approximated in more detail by the present
model. On the other hand the orientation hardening
behaviour seems to better fit the experimental results.
An improved approximation could however be ob-
tained if we use the full network description instead of
the three-chain model for the calculation of the back
stresses at a large deformation.

4. Conclusion

In this paper, a new model to describe the plastic flow
of glassy polymers has been developed. The present
work contributes in a wide sense to the understanding
of molecular link orientation during large deforma-
tion. Assuming a “pseudo affine” deformation in
a continuous sense, the re-orientation of isotropic
rigid links embedded in an elastic medium has been
described. We have assumed that the main mechanism
that operates when plastic flow occurs has a co-opera-
tive nature. This allows the derivation of a plausible
expression for the plastic shear rate and the yield
stress. The kinematics formulation used to produce
the model is taken from the original work of Boyce
et al. [5]. The application of the present analysis to
certain materials and modes of deformations, revealed
a more flexible description for the determination of the
deformation area where plastic flow occurs. In addi-
tion to detailed fitting of experimental results the
proposed method constitutes an approach for a more
profound knowledge of changes in molecular confor-
mation that occur in amorphous polymers at the yield
point. Amongst the different aspects of the yield be-
haviour which are described by this model is the
volume dependence during the plastic deformation.
The assumption that stress induces a volume increase
resulting in a chain segment mobility that underpins
most work in the area is not necessary. The assump-
tion made in this theory, that under stress it is a
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change in the rigid link distribution that produces
yield behaviour, does not imply any volume increase.
The pressure dependence of the yield stress is also not
a direct consequence of the free volume variation, it is
a probable redistribution of the free volume packets
which results in a change of the shear modulus with
respect to hydrostatic pressure. The most important
contribution of the present work however is that it
explains the yield behaviour by using the concept of
co-operative motion, which is the main motive for the
most immediate association of plastic flow with the
glass transition phenomena of glassy polymers.
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